Adaptive Estimation of the Regression Discontinuity Model
نویسنده
چکیده
In order to reduce the nite sample bias and improve the rate of convergence, local polynomial estimators have been introduced into the econometric literature to estimate the regression discontinuity model. In this paper, we show that, when the degree of smoothness is known, the local polynomial estimator achieves the optimal rate of convergence within the Hölder smoothness class. However, when the degree of smoothness is not known, the local polynomial estimator may actually inate the nite sample bias and reduce the rate of convergence. We propose an adaptive version of the local polynomial estimator which selects both the bandwidth and the polynomial order adaptively and show that the adaptive estimator achieves the optimal rate of convergence up to a logarithm factor without knowing the degree of smoothness. Simulation results show that the nite sample performance of the locally cross-validated adaptive estimator is robust to the parameter combinations and data generating processes, reecting the adaptive nature of the estimator. The root mean squared error of the adaptive estimator compares favorably to local polynomial estimators in the Monte Carlo experiments. Keywords: Adaptive estimator, local cross validation, local polynomial, minimax rate, optimal bandwidth, optimal smoothness parameter JEL Classi cation Numbers: C13, C14
منابع مشابه
Household electricity demand estimation: a regression discontinuity design approach
Estimating electricity demand elasticity in different sectors has been an essential research topic. Considering the fact that pricing electricity in various countries does not follow the same rules, many econometrics methods have been developed to estimate this crucial parameter. Electricity demand elasticity is defined as the percent change in electricity consumption in response to one percent...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملEstimation of coal proximate analysis factors and calorific value by multivariable regression method and adaptive neuro-fuzzy inference system (ANFIS)
The proximate analysis is the most common form of coal evaluation and it reveals the quality of a coal sample. It examines four factors including the moisture, ash, volatile matter (VM), and fixed carbon (FC) within the coal sample. Every factor is determined through a distinct experimental procedure under ASTM specified conditions. These determinations are time consuming and require a signific...
متن کاملEstimation in the Regression Discontinuity Model∗
The regression discontinuity model has recently become a commonly applied framework for empirical work in economics. Hahn, Todd, and Van der Klaauw (2001) provide a formal development of the identification of a treatment effect in this framework and also note the potential bias problems in its estimation. This bias difficulty is the result of a particular feature of the regression discontinuity...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کامل